42 research outputs found

    Carotid Artery Wall Imaging: Perspective and Guidelines from the ASNR Vessel Wall Imaging Study Group and Expert Consensus Recommendations of the American Society of Neuroradiology

    Get PDF
    SUMMARY: Identification of carotid artery atherosclerosis is conventionally based on measurements of luminal stenosis and surface irregularities using in vivo imaging techniques including sonography, CT and MR angiography, and digital subtraction angiography. However, histopathologic studies demonstrate considerable differences between plaques with identical degrees of stenosis and indicate that certain plaque features are associated with increased risk for ischemic events. The ability to look beyond the lumen using highly developed vessel wall imaging methods to identify plaque vulnerable to disruption has prompted an active debate as to whether a paradigm shift is needed to move away from relying on measurements of luminal stenosis for gauging the risk of ischemic injury. Further evaluation in randomized clinical trials will help to better define the exact role of plaque imaging in clinical decision-making. However, current carotid vessel wall imaging techniques can be informative. The goal of this article is to present the perspective of the ASNR Vessel Wall Imaging Study Group as it relates to the current status of arterial wall imaging in carotid artery disease

    Differential Differences in Methylation Status of Putative Imprinted Genes among Cloned Swine Genomes

    Get PDF
    DNA methylation is a major epigenetic modification in the mammalian genome that regulates crucial aspects of gene function. Mammalian cloning by somatic cell nuclear transfer (SCNT) often results in gestational or neonatal failure with only a small proportion of manipulated embryos producing live births. Many of the embryos that survive to term later succumb to a variety of abnormalities that are likely due to inappropriate epigenetic reprogramming. Aberrant methylation patterns of imprinted genes in cloned cattle and mice have been elucidated, but few reports have analyzed the cloned pig genome. Four surviving cloned sows that were created by ear fibroblast nuclear transfer, each with a different life span and multiple organ defects, such as heart defects and bone growth delay, were used as epigenetic study materials. First, we identified four putative differential methylation regions (DMR) of imprinted genes in the wild-type pig genome, including two maternally imprinted loci (INS and IGF2) and two paternally imprinted loci (H19 and IGF2R). Aberrant DNA methylation, either hypermethylation or hypomethylation, commonly appeared in H19 (45% of imprinted loci hypermethylated vs. 30% hypomethylated), IGF2 (40% vs. 0%), INS (50% vs. 5%), and IGF2R (15% vs. 45%) in multiple tissues from these four cloned sows compared with wild-type pigs. Our data suggest that aberrant epigenetic modifications occur frequently in the genome of cloned swine. Even with successful production of cloned swine that avoid prenatal or postnatal death, the perturbation of methylation in imprinted genes still exists, which may be one of reason for their adult pathologies and short life. Understanding the aberrant pattern of gene imprinting would permit improvements in future cloning techniques

    Epigenetic associations in relation to cardiovascular prevention and therapeutics

    Full text link
    corecore